
© 2024 Ishika Agarwal

ACTIVE GRAPH ANOMALY DETECTION

BY

ISHIKA AGARWAL

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2024

Urbana, Illinois

Advisor:

Associate Professor Hanghang Tong

ABSTRACT

Recently, detecting anomalies in attributed networks has gained a lot of attention from

research communities due to the numerous real-world use cases in the financial, social media,

medical, and agricultural domains. This thesis aims to explore node anomaly detection in

two different aspects: soft-labeling, and multi-armed bandits. The environment in both

settings is constrained to an active learning scenario where there is no direct access to

ground truth labels but access to an oracle. This thesis comprises of three works: one using

soft-labeling, another with multi-armed bandits, and a third that explores a combination

of both. We present experimental results for each work to justify the algorithmic decisions

that were made. Future work is also discussed to build on top of these methods.

ii

To all the people who believe in me...

iii

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Hanghang Tong for his guidance and mentorship.

I’m utterly grateful to him for giving me the opportunity to join his esteemed lab. Next, I

would like to thank my family for supporting me throughout my academic career. I would

not be here today without their encouragement and confidence in me. I would also like to

thank my friends for the great memories and keeping me sane.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Outline . 2
1.2 Preliminaries . 2

CHAPTER 2 LITERATURE SURVEY . 5
2.1 Graph Representation Learning . 5
2.2 Reinforcement Learning . 6
2.3 Active Learning . 7
2.4 Mixup . 8

CHAPTER 3 ACTIVE GAD USING MIXUP . 10
3.1 Problem Formulation . 10
3.2 Methodology . 10
3.3 Empirical Results . 13
3.4 Summary . 17

CHAPTER 4 ACTIVE MULTI-ARMED BANDITS FOR CLASSIFICATION . . . 18
4.1 Problem Formulation . 19
4.2 Methodology . 19
4.3 Empirical Results . 21
4.4 Connection to GAD. 25
4.5 Summary . 26

CHAPTER 5 GAD USING BANDITS . 28
5.1 Problem Formulation . 28
5.2 Methodology . 28
5.3 Empirical Results . 29
5.4 Summary . 30

CHAPTER 6 CONCLUSION . 32
6.1 Summary . 32
6.2 Future Work . 32

REFERENCES . 35

v

CHAPTER 1: INTRODUCTION

Graph data is ubiquitous and can represent complex systems of relationships in diverse

domains such as social media [1], citation networks [2], and product reviews [3]. Unfortu-

nately, these networks can contain malicious components whose behavior deviates from that

of the general population. These are called anomalies, as opposed to benignities. Graph

anomaly detection (GAD) aims to learn a function that can detect anomalous entities in a

graph. Detecting such entities is important because anomalies indicate fraudulent activities

and untrustworthy information [4]. These entities can be nodes, edges, or subgraphs.

Example of anomalies in graphs. Consider a social network. The nodes represent

users and the edges represent connections between the users - for example, a user following

another. Bots represent anomalies in this scenario, and we can map the different anomalous

entities to a bot’s behavior.

Firstly, anomalous nodes would be bot accounts where the attributes differ significantly

from those of their followers [5]. A few examples of account attributes are their post content,

frequency of posts, and post engagements (likes, reposts, etc.). Next, anomalous edges

could represent strange connections that bot accounts have with irrelevant accounts [4]. An

example of a strange connection would be between a bot that posts spam advertisements

and a user who posts about their academic research. Finally, bot networks could represent

anomalous subgraphs [4]. Bot networks are usually heavily dense since each user follows all

the other accounts in the network [6]; this simply is not normal with real users, even within

a large group of friends.

Problem Statement. Graph anomaly detection is an important task, and one that has

been heavily researched so far [7, 8, 9, 10, 11, 12]. Although graph data is prevalent, ground

truth labels are hard to acquire. Due to the lack of annotate data, researchers and industry

practitioners have turned to using active learning to enable low-resource (specifically, few-

shot) model training.

Following this trend, we constrain the environment in this research by assuming we also do

not have direct access to ground truth labels. Instead, we have an oracle (a human expert, a

teacher model, etc.) that can provide labeled information at a cost. We impose a querying

budget, allowing us to leverage active learning techniques to ensure the high informativeness

of the queries made to the oracle.

1

1.1 OUTLINE

In the rest of this chapter, we provide some background on the preliminary concepts used

in this thesis. Chapter 2 provides an overview of the related works regarding this area. It

also highlights the gap in the previous works that we aim to address.

The next three chapters – 3, 4, and 5 – discuss novel works done towards this thesis,

namely, AMUGraph, NeurONAL, and AMUBandits. A brief description of each is provided

below. Finally, Chapter 6 contains a brief summary of the thesis, and elaborates on some

future works that can be made in this area.

AMUGraph. This method is a GAD framework that uses mixup to enrich the information

from the labeled queries obtained through active learning. This framework uses represen-

tation learning to quantify uncertainty. The learning process is separate for anomalies and

benignities to improve the accuracy. Details are in Chapter 3.

NeurONAL. This method is useful for node classification, which is a broader category of

anomaly detection. We use multi-armed bandits with principled exploration and exploitation

to make efficient and accurate predictions. Details are in Chapter 4. This work was accepted

into ICLR 2024 [13].

AMUBandits. This method is a combination of the above two methods. It uses multi-

armed bandits with algorithmic details borrowed from the previous works. We explore

variants of the algorithm as well. Details are in Chapter 5.

1.2 PRELIMINARIES

1.2.1 Multi-Armed Bandits

Multi-armed bandits (MABs) are powerful agents that can learn patterns in data via

reinforcement learning [14]. A common example of an MAB is an agent learning to maximize

their reward on slot machines. Given input data about the state of an environment, an MAB

can pull one of k arms, after which it will receive a reward.

We can model classification as an MAB problem where each arm is a label in the label set.

The reward can be any standard label entropy loss. The replay buffer will contain tuples

(X, y) where X is a data sample and y is the true label.

2

Exploration vs exploitation. One common consideration in multi-armed bandits, and

reinforcement learning in general, is balancing exploration and exploitation. Recall that the

goal of reinforcement learning agents is to learn a policy π that will accurately map states

to actions. During training, the agent receives positive rewards for correct actions. While

learning the policy π, the agent could simply choose the action with the highest reward,

thereby exploiting the action. However, that might leave many areas of the state-action

space unexplored: areas that might have higher rewards [15].

For example, consider a reinforcement learning agent that is learning to recommend con-

tent to a user. If the user enjoys cat videos, the agent might exploit that knowledge and

continuously recommend cat videos. However, suppose the user enjoys dog videos even more,

and generates more engagement with such videos (which translates to a higher reward). If

the agent never experiments with and explores the user’s interests, it will never find out that

the user enjoys dog videos. Hence, while training, an agent must learn to balance exploration

and exploitation in order to maximize the rewards and learn an optimal policy.

1.2.2 Active Learning

Labeled data can be quite difficult and expensive to obtain. Instead of labeling the entire

dataset, active learning involves an oracle (human expert-in-the-loop or a teacher model)

that provides labels to given data. In order to avoid abusing the oracle by querying for the

label of every data point, a query budget is imposed. The goal of active learning is to learn

a model that achieves comparable performance using only a subset of data, as opposed to

using the entire labeled dataset [16]. We can do this by calculating the uncertainty of a

prediction to maximize the information gained by the labeled data.

Active learning algorithm design usually answers the following three questions1:

1. How does one calculate the uncertainty of a prediction?

2. How does one query for a label? Is the oracle a teacher model, or a human expert?

Are the labels hard or soft?

3. Once the labels are acquired, how does one maximize the information learned by the

queried data?

There are three flavors of active learning sampling: membership query synthesis, stream-

based, and pool-based [16]. In membership query synthesis, the model can generate queries

that potentially yield the maximum amount of information. Unfortunately, this is not always

1Since they use active learning, all methodologies in this thesis will answer these three questions.

3

feasible for human annotators since the generated queries are sometimes indecipherable.

For example, [17] used query synthesis to ask humans to annotate handwritten digits, but

they found the generated digits were not recognizable. For such reasons, stream-based and

pool-based sampling are more favorable since they use the available data, which ensures

interpretability.

In stream-based active learning, the model is provided with data as a stream. The model

needs to decide on-the-fly whether it wants to query for the label of a certain data point.

On the other hand, in pool-based active learning, the model assumes access to all the data

beforehand. This way, the model can choose a small subset of data points on which to query.

Usually, stream-based learners have a larger query budget than pool-based learners.

1.2.3 Mixup

Mixup is a popular strategy originated in computer vision, used to augment data for

classification models. It generates new images by linearly interpolating existing images, i.e.,

taking a weighted sum of two images and their labels [18]. Consider two data instances

(image, label): (xi, yi) and (xj, yj). Mixup creates a new data instance (xk, yk) using the

below formulation:

xk = λ · xi + (1− λ) · xj (1.1)

yk = λ · yi + (1− λ) · yj (1.2)

where λ is a parameter in (0, 1).

Mixup is used to make learning more robust and generalizable. It works particularly well

with soft labels because we can replace λ and (1−λ) with the soft labels. Using mixup with

soft labels is a common technique in a variety of domains such as image anomaly detection

[19] and intent classification in dialogue systems [20]. Soft labels not only express uncertainty,

but are useful to teach the model to be uncertain for wrong predictions and reduce the chance

of overconfident predictions. Mixup also helps to refine the decision boundaries, which, in

turn, improves prediction accuracy.

4

CHAPTER 2: LITERATURE SURVEY

This chapter provides a background of the current literature in the surrounding areas. We

point out many works and the key differences and limitations when compared to our work.

We also identify the gap that our research aims to bridge.

2.1 GRAPH REPRESENTATION LEARNING

There are many works that perform representation learning on graphs for anomaly detec-

tion. Representation learning can be useful for anomaly detection as it provides a classifi-

cation framework based on the latent space representation [21, 22]: specifically, the recon-

struction loss [23].

While [21] introduces a new algorithm, it builds upon a well-established concept of con-

structing hyperspheres in the latent representation to detect anomalies. Embeddings of

benign nodes are pushed into the hypersphere while embeddings of anomalies are pushed

away from the hypersphere. As a result, when performing inference on such a model, a node

is classified as an anomaly if the embedding is outside of the hypersphere.

Works like [22, 24, 25] learn a classifier on top of the latent space. These methods opti-

mize the reconstruction and the classifier at the same time. The joint optimization enables

a stronger and robust learning process. In addition, this method is quite popular with

domain-specific applications – dementia diagnosis on neuroimages [26], anomaly detection

in industrial inspection [27], pest and disease detection in crops [28], and many more. Es-

sentially, the representational module will act as the feature extractor and the classification

module will perform the task.

Another common technique in representation learning is categorizing anomalies based

on the reconstruction loss [23]. Since anomalies deviate from the normal behavior, it is

expected that models cannot learn the distribution or structure of anomalies well enough

while reconstructing them. Therefore, we can use the reconstruction loss as a score to detect

anomalies. Nodes with high reconstruction loss are considered anomalous, while nodes with

low reconstruction loss are considered benign. An important work following this notion, and

one we borrow ideas from, uses label information to train a variational autoencoder [29],

a traditionally unsupervised model. They also perform anomaly detection, but in tabular

time series applications, where they modify the ELBO training objective based on whether

the node is an anomaly or benignity. As mentioned later on in Chapter 3, because there

are only a few anomalous data points, using a standard training objective will result in a

5

model that knows how to reconstruct an anomaly, which reduces the reconstruction loss

and the ability to detect anomalies. Having separate training objectives for anomalies and

benignities enhances and improves detection, as our experiments also show.

2.2 REINFORCEMENT LEARNING

Recent works have demonstrated the power of reinforcement learning and multi-armed

bandits for graphs [30] and even for anomaly detection (on graph and tabular data) [10, 11].

Reinforcement learning is able to combine the representational power of deep learning with

the inherent decision-making framework [31].

Among the taxonomy of reinforcement learning, actor-critic is a framework that consists of

two networks: an actor that makes decisions and a critic that criticizes the decisions. This is

not unlike the roles of the generator and discriminator in a Generative Adversarial Network

(GAN) [32]. [33] employs the actor-critic framework to detect anomalies in wireless sensor

networks. They train the agent to choose one of the N sensors that might be anomalous,

and assign a reward proportional to how high the confidence score is. The actor is used to

explore a policy to map states to actions, and the critic is used to estimate the value of a

state. We use a similar principle in the formulation of the method laid out in Chapter 4.

Specifically, since the task of anomaly detection does not have any state transitions or

a diverse action space, anomalies can be detected using a multi-armed bandit. [30] uses a

multi-armed bandit to learn an optimal policy to maximize rewards on graph data. They

experiment with a toy example of a drone that aims to provide internet access to a rural

area. The drone receives rewards proportional to the amount of communication traffic the

drone is able to handle in a certain area. In this scenario, the drone does not have access

to the reward distribution and therefore, must use guided exploration and exploitation to

maximize rewards.

[11] uses reinforcement learning to jointly learn to detect anomalies with a partially labeled

dataset. In their semi-supervised setting, the agent samples a new point on which to classify

and train. The agent receives an intrinsic reward if it identifies data points that are abnormal

(can be determined by a weak learning - iForest [34], for example). It will also receive an

extrinsic reward if a correct classification is made.

[10] also uses multi-armed bandits and human-machine collaboration to rank the abnor-

mality of nodes in graphs. Using clustering techniques to group nodes, the bandit is tasked to

choose a cluster that has suspicious nodes, query the human expert on one of the nodes, and

learn from the feedback. This process is repeated until a certain query budget is exhausted.

In these works, it is clear that multi-armed bandits are very useful to balance exploration

6

and exploitation. The common setting in these works is that they are off-policy, which means

they learn from past experience. Off-policy bandits can be expensive to learn because of the

costs to constantly train on the replay buffer. An anomaly detection algorithm could benefit

from learning from a few data points, where the size of the replay buffer is controlled.

2.3 ACTIVE LEARNING

Works such as [23] and [11] assume partially labeled data. While this setting is quite

practical, we can obtain higher quality data with the use of human-machine collaboration

in the form of active learning. Active learning has become an area of interest for researchers

because of the practice implications and ease of implementation. It is much easier for

machine learning model developers to use human expertise to provide a few labels than to

collect labeled data.

Usually, unsupervised anomaly detection methods make certain assumptions on the anomaly

distribution - active learning can alleviate this [25]. In this particular work, they develop a

model-agnostic neural network layer, called the UAI layer, that can be used to output an

anomaly score given some latent representation. In batches, they rank and select a few data

points to query to improve the original model. In this thesis, two of our works use a similar

principle of performing classification on the latent space representation.

As mentioned before, [10] uses active learning to alleviate the cost of requiring labeled

data. Here, pool-based active learning is employed and the human labeler provides hard

labels.

[35] employs active learning and multi-armed bandits to find erroneous triples in knowl-

edge graphs. Using some off-the-shelf anomaly detectors, they identify a few suspicious

triples, query a human expert, and assign a reward based on the correct identification of an

anomalous triple. They assign a hard reward of 0 or 1, which can be useful for training, but

can be hard to distinguish the uncertainty of two data points. Rewards assigned in a range

of [0, 1] are useful for ranking the uncertainty of data points to ensure the queries are most

informative.

In [29], a variational autoencoder-based network is employed. Therefore, they define

uncertainty based on the evidence lower bound (ELBO) of a certain data point. Recalling

that the ELBO contains a component for the reconstruction loss, they find that benign

points have a low ELBO (< 5e− 3) while anomalous points have a large ELBO (> 20). In

their model SemiVAE, they formulate a querying strategy based on this finding. We borrow

the concept of the SemiVAE model architecture.

7

While it makes anomaly detection algorithms much more practical with industry require-

ments and scale, active learning algorithms do not fully utilize the rich information of labeled

data. Data augmentation strategies can be used to take full advantage of the valuable labels.

2.4 MIXUP

Due to the limited amount of data present in active learning algorithms, there is a risk of

overfitting to the data, especially with deep learning models [36]. To address, this, either we

can acquire more data, which is contradicts our goals, or we can artificially create more data.

To ensure our artificial data ”looks like”2 our current data, we can use data augmentation

strategies like mixup. It is widely used in the field of computer vision, but can also be

applicable to other forms of data, such as tabular data and graphs.

Particularly, [37] uses mixup for graph data augmentation. They map nodes from one

input graph to the nodes of another input graph, align the two graphs based on their node

features and network topology, and mix the graph to generate a new one with soft edges (i.e.,

weighted edges). In the context of node classification, works like [38] mix the node features

and the network topology. This enhances predictions by expanding the training distribution

into areas that are reachable by linear interpolation – the core principle of mixup – from

areas in which the current data lies [18]. Since graphs are information-rich, mixup can result

in a high volume of informative data without overfitting.

In the context of anomaly detection, researchers have found that such tasks can be im-

proved upon with mixup. For example, [39] uses mixup, for graph anomaly detection, to

augment anomalies by mixing known anomalies with high-confidence unlabeled anomalies.

They use the Euclidean distance between node embeddings to determine confidence. [40]

performs image anomaly detection by learning a model to reject out-of-distribution samples.

They mix in-distribution images with each other to learn a model.

In the specialized field of graph anomaly detection and data augmentation, a very recent

work on learnable data augmentation [41] has shown that adding a small amount of noise to

the existing homophilic graph data3 can improve anomaly detection performance by 3-5%.

They argue that using data augmentation is beneficial in low-resource settings, which fits

this thesis’ setting of active learning.

Moreover, an implicit benefit of mixup is its ease of use with soft labeling. In practice,

hard labels are harder to obtain because they require an expert to determine [42], whereas

soft labels can be acquired from knowledgeable, but not expert sources. [43] use mixup

2The new data should not be out-of-distribution with respect to the current data.
3Graphs that exhibit homophily, i.e., the tendency of edges to connect similar nodes.

8

and soft labeling for text classification. They augment data samples by mixing two random

sets of text embeddings and their corresponding soft labels. They find that soft labels have

inherent uncertainty, which mixup can alleviate, thereby improving the classification.

In summary, mixup has shown good performance when applied to graphs, anomaly de-

tection, and with soft labeling. The primary advantage of using mixup is to improve the

generalizability and robustness of the model. [44] shows that the classification decision-

making boundaries are smoother, because it avoids overfitting to a small set of data, which

boosts the robustness against neural network attacks.

This thesis explores the narrow but interesting intersection among these works: performing

anomaly detection on graphs, particularly on graph nodes, with active multi-armed bandits

that augment data using mixup.

9

CHAPTER 3: ACTIVE GAD USING MIXUP

In this chapter, we describe Active Mix Up for Graph Anomaly Detection (AMUGraph),

an active graph anomaly detection algorithm. Graph data is prevalent, but ground truth

labels are hard to acquire. Hence, active learning can be used to obtain soft labels for

efficient supervised learning. Active learning assumes no initial access to labeled data but

relies on access to an oracle that can provide ground truth data. In order to avoid overuse

of the oracle, we impose a small query budget.

Here, the oracle represents a human expert. Because of the data complexity4, it can be

infeasible to expect human labelers to be fully confident in their predictions. Therefore, we

assume the oracle will provide soft labels. Intuitively, a soft label of (0.3, 0.7) means the

oracle is 70% confident the node is anomalous. We employ pool-based active learning where

in each of the R rounds, we query r points.

To make the labeled data more informative, we can use data augmentation strategies to

simulate more labeled data. Hence, we use mixup, a popular computer vision technique.

3.1 PROBLEM FORMULATION

Input: (1) a graph G = (V,E,X) with nodes V - with attributes X - and edges E, (2)

an oracle O that provides soft labels.

Goal: to learn a function f(x; θ) that outputs a label {benign, anomalous} for a given

node x, where θ represents the function’s parameters.

To determine which nodes to query, we use the normalized reconstruction loss, L2 norm,

between the original and reconstructed node embeddings. We assume that nodes with a

reconstruction loss near 0.5 exhibit high uncertainty. Therefore, the model randomly chooses

r points with reconstruction losses in the range of [0.4, 0.8] for training5.

3.2 METHODOLOGY

Figure 3.1 shows the model training architecture for AMUGraph. The key components of

the AMUGraph framework are explained as follows:

SemiVAE. In anomaly detection, as previously mentioned, a common technique is to

measure ”anomalousness” by using the reconstruction loss. Anomalies are expected to have

4Graph data can be complex to interpret, requiring an expert to be able to label.
5This range was treated as a hyperparameter (see Section 3.3.5 for details on hyperparameter tuning).

10

Figure 3.1: The model training architecture for AMUGraph. The orange node is anomalous.
Here, z represents the latent space, and x′ represents the reconstructed node x.

higher reconstruction losses. However, if a model is trained to reconstruct anomalies, it

might get better at reducing the reconstruction loss over time [29]. Therefore, to ensure the

reconstruction loss is high for anomalies, we must separate the learning of benign nodes and

anomalous nodes.

Hence, we borrow the concept of the SemiVAE [29] - the difference from the standard VAE

lies in the loss function. The loss function of a VAE has two components: the reconstruction

loss and the KL-divergence. [29] splits the training set into benign points and anomalies. For

benign points, they train the network with the original VAE loss function. For anomalies,

however, they train the network to only maximize the reconstruction loss.

Below is the mathematical formulation. u is an encoder neural network with parameters

ϕ. It takes in input x and outputs a hidden representation z. v is a decoder neural network

with parameters θ. It takes in input z and outputs a reconstruction.

L(x) =

Euϕ
[log(vθ(x|z))]−KL(uϕ(z|x)||vθ(z)) if x is benign

−Euϕ
[log(vθ(x|z))] if x is anomalous

(3.1)

We use the same principle in our architecture because it allows us to create a scoring

function based on the reconstruction loss. If the reconstruction loss is low, the point is

classified as benign; if the reconstruction loss is high, the point is classified as anomalous.

Querying and Mixup. The oracle represents a human expert. As mentioned before,

the oracle will provide soft labels. Due to the nature of soft labels, each node can be

11

thought to have a benign component and an anomalous component. This structure can be

particularly useful in mixup. Consider two nodes xp and xq with soft labels (pb, pa) and

(qb, qa), respectively
6. To mix two nodes, we calculate a weighted sum of the anomalous

component of one node and the benign component of another node. Using mathematical

notation, we calculate the new embedding and the soft label as7:

xnew = pb · xp + qa · xq (3.2)

ynew = (pb, qa) (3.3)

Overall, we employ this strategy to augment every pair of queried nodes to obtain a larger

training set. A node xp is anomalous if pa > pb and benign otherwise. All of the new

augmented data are added to the training set and are used for training, including forward

and backpropagation.

Classification. For the final classification, we use the latent representation (we treat the

latent dimension size as a hyperparameter). First, we use the soft labels to split the points

into anomalies and benign nodes. Again, a point is anomalous if the anomalous component

has a larger confidence than the benign component and benign otherwise.

Next, we treat the values in each dimension as a distribution (see Figure 3.2). For a

new testing node w, the latent representation is extracted. Then, for each dimension, we

calculate the probability density function (PDF) of the value in that dimension according

to both the distributions (anomalous and benign). We average the probabilities across the

dimensions and retrieve a new soft label (wb, wa). If wa > wb, the node w is classified as

anomalous and benign otherwise.

3.2.1 Active Learning.

Here, we answer the three questions relevant to active learning algorithm design outlined

in Section 1.2.2. The uncertainty of a prediction is calculated using the reconstruction loss.

A query is made to a human labeler who will return a soft label. Once the labels are acquired,

data augmentation will maximize the information inherent in the queried data.

6The benign component is denoted with the subscript b and the anomalous component with subscript a.
7We have empirically tested that there is no difference between pb ·xp + qa ·xq and pa ·xp + qb ·xq, which

is expected.

12

Figure 3.2: Creating distributions for the latent representations for classification.

3.3 EMPIRICAL RESULTS

3.3.1 Datasets

In this thesis, we use two datasets: Pubmed [45] and Yelp [46]. The Pubmed graph

dataset is a citation network dataset where nodes are publications and edges indicate citation

relationships. This is a node classification dataset where the goal is to predict the category

of a certain publication. The Yelp dataset (or Fraud Yelp Dataset) contains restaurant

and hotel reviews where nodes are reviews and edges connect reviews to users, reviews to

products, and reviews to reviews. This is another node classification dataset where the goal

is to identify fraudulent reviews. Table 3.1 show the statistics of these datasets.

Pubmed Yelp
Nodes 19,717 45,954
Edges 88,651 8,051,348

% Training 74.9 74.9
% Anomalous 20.81 14.53

Table 3.1: Statistics of the Pubmed and Yelp graph datasets.

3.3.2 Experimental Setup

Since Pubmed does not contain anomalous data, we randomly treat one the classes as

anomalous, and the other classes as benign. We run our training algorithm for 5 rounds

with 0.69% labels for each round (total of 3.5% of the dataset). Because we do not have

access to a human labeler, we train a Graph Convolutional Network (GCN) [47] on the

13

Pubmed Yelp
DOMINANT 60.6 57.4

GDN 61.7 67.8
AMUGraph-SVAE 50.7 51.9

AMUGraph-NoAugment 52.3 51.9
AMUGraph-Random 54.7 65.7

AMUGraph 74.1 72.6

Table 3.2: ROC-AUC (%) on the selected datasets and baselines compared to AMUGraph.
Higher is better.

training set of each dataset. We train the GCN for 40 epochs with a learning rate of 1e-3.

To gauge performance, we use the ROC-AUC score.

3.3.3 Baselines

We use a few baselines. Firstly, we use the Graph Deviation Network (GDN) from [12].

It uses few-shot learning to encode node representations and learn an abnormality scoring

function. Secondly, we compare our method with [23]’s DOMINANT method that works

on the latent representations from an autoencoder. They first encode the graph structure

with the attributes. Then, they split the decoding into a structural reconstruction and an

attribute reconstruction. Finally, they compute a score over the reconstructions which is

then ranked to find anomalies.

Finally, we report the performance of our method without the mixup augmentation strat-

egy (called AMUGraph-NoAugment), without the active learning strategy - where we choose

a random subset of points on which to query - (called AMUGraph-Random), and without

either (called AMUGraph-SVAE).

3.3.4 Results

Table 3.2 shows the results for our experiments. As shown, our method is competitive

against both baselines and shows improvement in ROC-AUC.

The objective of the SemiVAE allows the model to learn to reconstruct benign points,

guiding this towards a one-class classification problem, which is an easier task in represen-

tation learning. Also, using active learning querying strategies helps to identify points that

provide the most information, which improves the learning process. Furthermore, mixup

works well with active learning, because mixup will create points that are close to the deci-

sion boundaries, ultimately enriching the information provided by the querying.

14

3.3.5 Hyperparameter Tuning

Here, we provide a few details on the hyperparameter tuning. We provide details on

the human labeler simulator, the baselines, and the various parameters used in AMUGraph,

including the number of rounds, the latent dimension size, and the query uncertainty criteria.

While most of these studies are performed on the Yelp dataset, we find that the trends

observed here are consistent on the Pubmed dataset as well.

Human labeler simulator. As mentioned before, we simulate a human labeler by train-

ing a GCN on the data. We use the exact same training and testing split across the GCN

and AMUGraph to ensure there is no label leakage. We train the GCN by performing a

grid search across {20, 40, 60, 80, 100} for epochs and {1e-3, 2e-3, 5e-3, 1e-2, 2e-2} for the

learning rate.

Baseline hyperparameters. For the baselines DOMINANT and GDN, we use the hy-

perparameters provided in the source code found on Github. We find that the performance

of both algorithms match the performance in the original papers.

AMUGraph hyperparameter studies. In Section 3.3.2, we mention that we run our

algorithm for 5 rounds with a query budget 0.69% and that our querying criteria was a

reconstruction loss in the range of [0.4, 0.8]. Additionally, we use a latent dimension size of

32. Below, we provide empirical results from the hyperparameter tuning we performed.

Table 3.3 demonstrates the performance with varying round-query budget values for the

Yelp dataset. The first row indicates AMUGraph achieves an ROC-AUC of 72.6% with 5

rounds where each round has a query budget of 103 data points. It seems that with fewer

rounds and more query budget in each round, the performance improves. This could be due

to the larger training set in the settings with fewer rounds, which allows for more robust

learning.

Rounds Query Budget (%) ROC-AUC(%)
5 103 (0.69) 72.6
10 51 (0.35) 70.5
16 32 (0.21) 68.3
20 25 (0.17) 67.1

Table 3.3: ROC-AUC wrt varying round-query budget values on the Yelp dataset. Note
that each round-query budget pair adds up to 3.5% of the entire dataset.

Table 3.4 demonstrates the performance across query uncertainty criteria, with varying

15

lower and upper threshold values, for the Yelp dataset. AMUGraph seems to suffer with

thresholds that are too large (i.e., [0.2, 0.8]) and too small (i.e., [0.2, 0.4], [0.4, 0.6], and

[0.6, 0.8]). Larger thresholds might include points with high certainty, therefore not gain

much information during querying. Next, while it is our assumption that uncertainty results

in reconstruction losses near 0.5, that might not be true for all cases. Therefore, smaller

thresholds, even if they are near 0.5, would not be flexible enough to fully capture uncertainty.

For these reasons, [0.4, 0.8] seems like a good compromise.

0.2 0.4 0.6
0.4 67.3 x x
0.6 67.1 65.1 x
0.8 66.4 72.6 64.0

Table 3.4: ROC-AUC wrt varying lower and upper threshold values on the Yelp dataset.
The column labels indicate the lower threshold while the rows indicate the upper threshold.

Table 3.5 demonstrates the performance with varying latent dimension sizes on both

datasets. There does not seem to be a clear reason why a latent dimension size of 32 works

the best with both datasets. However, one can notice a stark performance improvement with

a latent dimension size of 32 compared to that of 16 or 64.

Pubmed Yelp
8 52.2 65.4
16 66.6 57.9
32 74.1 72.6
64 51.6 67.5

Table 3.5: ROC-ARC wrt varying latent dimension sizes.

3.3.6 Unsupervised Methods

To put this method in perspective and make the emprical results more comprehensive, we

add a short evaluation involving an unsupervised methods. In the below table, we compare

our method with the unsupervised method AnomalyDAE [48]. We find that AnomalyDAE

performs slightly better than our method. Still, the settings of the two problems are different

in which our work aims to generate good soft labels for anomaly detection.

16

Pubmed Yelp
DOMINANT 60.6 57.4

GDN 61.7 67.8
AMUGraph-SVAE 50.7 51.9

AMUGraph-NoAugment 52.3 51.9
AMUGraph-Random 54.7 65.7

AnomalyDAE 74.3 74.0
AMUGraph 74.1 72.6

Table 3.6: ROC-AUC (%) on the selected datasets and baselines (in particular, compared
with an unsupervised method). Higher is better.

3.4 SUMMARY

In this chapter, we described a method that uses mixup to augment and enhance labeled

data that was received by an oracle using an active learning training algorithm. As a

downstream task, this framework was applied on node anomaly detection in graphs. We

also borrowed a label-specific representation learning strategy where only benign data points

are learned to be represented and reconstructed. Through evaluation, we were able to show

how our method outperforms a few seminal algorithms regarding node anomaly detection

by a 4.8-12.4% performance improvement, and how the performance varies with respect to

different components of our algorithm.

17

CHAPTER 4: ACTIVE MULTI-ARMED BANDITS FOR CLASSIFICATION

In this chapter, we describe a work that was accepted to ICLR 2024 [13] called Neural

Online Active Learning (NeurONAL). We solve multi-class classification using active multi-

armed bandits. We provide two new efficient learning algorithms using stream-based and

pool-based active learning, respectively.

In stream-based active learning, the agent receives data one point at a time and needs to

decide on-the-fly whether to query it. Alternatively, in pool-based active learning, the agent

receives all the data at once and in each round, can query a pool of data points. In either

setting, a small query budget is imposed and queries are made until the budget is exhausted.

The goal of active learning is to exploit the knowledge from labeled data points and explore

new knowledge from unlabeled data.

Recent research has shown that multi-armed bandits are good agents for using active

learning as they achieve good theoretical and empirical performance. We use neural networks

to represent and balance exploration and exploitation. The exploitation network aims to

improve the classification while the exploration network aims to model the uncertainty in

the exploitation network.

In previous works [49, 50], in an effort to turn k-classification into a bandit problem, the

data instance x was transformed into a long vector that is k times the original data size:

xt,1 = [x⊤
t ,0

⊤, · · · ,0⊤], xt,2 = [0⊤, x⊤
t , · · · ,0⊤], xt,k = [0⊤,0⊤, · · · , x⊤

t] (4.1)

This is an effective method, but if k is large, it can be quite costly and cannot scale

well. See Figure 4.2 for a depiction of such a method. Setting aside the increased memory

requirements, calculating class scores for each class requires one forward pass through the

Figure 4.1: Synchronous, and more efficient, nature of our method, NeurONAL.

18

Figure 4.2: Sequential, and sub-optimal, nature of previous bandit-based algorithms.

model.

Thus, we propose two new algorithms that balance exploration and exploitation to make

learning bandits more efficient. Figure 4.1 illustrates our method. Comparing it to Figure

4.2, we can see that the efficiency of NeurONAL comes from the ability to calculate all k

class scores with one pass of the model versus making multiple passes through the model for

class scores.

4.1 PROBLEM FORMULATION

Input: (1) data X ∈ Rd with corresponding labels in the space {0, 1}k where k is the

length of the label set, (2) T rounds, and (3) oracle O.

Goal: to learn a bandit that learns to assign a given data instance x a label from the

label set {1, · · · , k}.

4.2 METHODOLOGY

Figure 4.3 illustrates the architecture of the neural networks used for exploitation and

exploration.

The exploitation network, f1, learns to classify data instances and receives rewards pro-

portional to the correctness of the network’s prediction. On the other hand, the exploration

network, f2, learns to model the uncertainty of the exploitation network. It does so by

19

Figure 4.3: The two neural networks for exploitation (left) and exploration (right) used in
NeurONAL.

receiving as input an embedding of f1’s parameters, denoted by ϕ(θ1) in the figure. The

exploration network receives rewards proportional to the uncertainty in f1’s prediction. The

rewards are calculated using the information gained from querying the oracle.

Training. The stream-based and pool-based settings use the same backbone algorithm for

training [13]:

1. A data instance is randomly sampled from the dataset.

2. The data instance is fed into f1, where the network partial derivative of f1 is fed

into f2, resulting in two k-dimensional vectors. These vectors represent a probability

distribution over the label space.

3. By adding them, we obtain a final distribution in which we can calculate the top-2

Bayes optimal classes.

4. If the difference in confidence between these two classes is small8, the corresponding

data instance will be queried.

5. From the queried information, the training sets for f1 and f2 will be constructed, and

6. A batch gradient descent will be performed to update the parameters of both networks.

These steps are repeated until the query budget is exhausted.

8This is determined by a hyperparameter. In this work, we query if the difference is smaller than 0.6.

20

Streaming versus pooling. In the streaming setting, the algorithm encounters each data

instance once. Using the criteria mentioned above in step (4), the learner will decide on-

the-fly whether to query an instance, and the parameters of f1 and f2 will be updated as

soon as the data instance is queried. In the pooling setting, the algorithm will encounter

each data instance multiple times. Using the same criteria, the learner will look over all the

data instances, and choose a pool of instances to query. After each round9, the pool will be

labeled and the network parameters will be updated.

4.2.1 Active Learning

Here, we answer the three questions relevant to active learning algorithm design outlined

in Section 1.2.2. A prediction is uncertain if the difference in confidence between the first-

and second-most Bayes optimal class is very small (see Step 4 of the training procedure).

Queries are answered by a human expert that provides a hard label. Once the labels are

acquired, a higher reward is given to the exploitation network for learning the correct class

label and to the exploration network for reducing the uncertainty in predicting the correct

class label. The joint cooperation between the exploration and exploitation networks is how

information is maximized from the queried data.

4.3 EMPIRICAL RESULTS

4.3.1 Datasets

We extensively evaluate NeurONAL in the stream-based (NeurONAL-S) and pool-based

(NeurONAL-P) settings on six public, tabular classification datasets: Adult, Covertype

(CT), MagicTelescope (MT), Shuttle, Fashion, and Letter. Table 4.1 displays the statistics

of the datasets. We use 10,000 instances for training and another 10,000 instances for testing

(except MT, where we use 9,000 for testing).

4.3.2 Baselines

Streaming. We use three baselines: (1) NeurAL-NTK [49], (2) I-NeurAL [50], and (3)

ALPS [51]. Given an instance, NeurAL-NTK is a method that predicts k scores for k classes

9In this work, we use 10 rounds. From the previous work, we see that 10 rounds with 100 queries per
round is a standard limit. Since we cap training datasets to 10,000 points, we are querying for 10% of the
dataset.

21

Instances # Features k
Adult 48,842 105 2
CT 581,012 98 7
MT 19,020 10 2

Shuttle 58,000 9 7
Fashion 70,000 784 10
Letter 124,800 784 2

Table 4.1: Statistics of the datasets used to evaluate NeurONAL.

sequentially, only based on the exploitation network classifier with an Upper-Confidence-

Bound (UCB). On the contrary, I-NeurAL predicts k scores for k classes sequentially, based

on both the exploitation and exploration network classifiers. NeurAL-NTK and I-NeurAL

query for a label when the model cannot differentiate the Bayes-optimal class from other

classes. Finally, ALPS makes a prediction by choosing a hypothesis (from a set of pre-trained

hypotheses) that minimizes the loss of labeled and pseudo-labeled data, and queries based

on the difference between hypotheses.

Pooling. Here, we use four baselines: (1) CoreSet [52], (2) BADGE [53], (3) DynamicAL

[54], and (4) ALBL [55]. Coreset is an approach that aims to create a set cover of data

points that can be used to effectively train a model. Points are selected by optimizing the

generalization error over the dataset, the training error, and the empirical loss between the

labeled and unlabeled data points. BADGE uses the k-means++ algorithm to select points

based on the predicted label and the gradient embedding of the network. DynamicAL creates

a query set by comparing the change in training dynamics over the unlabeled dataset and

chooses the points with larger changes. Finally, ALBL is a method that learns a number of

models and iteratively selects models to improve based on their past performances.

4.3.3 NeurONAL-S Results

To gauge performance, we use testing accuracy and running time. The results are compiled

in Table 4.2. As shown, NeurONAL-S consistently outperforms the baselines on all datasets

in terms of testing accuracy and running time. This is because traditional bandit-based

approaches calculate scores sequentially, while our neural network approach calculates scores

synchronously.

Figure 4.4 also compares the cumulative training regret at each round of NeurONAL-

S compared to the baselines. Regret is calculated by a mistake in a prediction; it is a

binary value of 0 (incorrect) or 1 (correct). As shown, NeurONAL-S’ regret climbs the

22

slowest compared to most baselines. Intuitively, the training regret for NeurONAL-S is slow

growing because of the balanced exploration and exploitation.

Adult MT Letter Covertype Shuttle Fashion
Accuracy

NeurAL-NTK 80.3 ± 0.12 76.9 ± 0.15 79.3 ± 0.21 61.9 ± 0.08 95.3 ± 0.20 64.5 ± 0.16
I-NeurAL 84.2 ± 0.22 79.4 ± 0.16 82.9 ± 0.06 65.2 ± 0.19 99.3 ±0.12 73.5 ± 0.28
ALPS 75.6 ± 0.19 35.9 ± 0.76 73.0 ± 0.41 36.2 ± 0.25 78.5 ± 0.21 74.3 ± 0.01

NeurONAL-S 84.8 ± 0.51 83.7 ± 0.17 86.5 ± 0.16 74.4 ± 0.19 99.5 ± 0.09 83.2 ±0.38
Running Time

NeurAL-NTK 163.2 ± 1.31 259.4 ± 2.48 134.0 ± 3.44 461.2 ± 1.26 384.7 ± 1.86 1819.4 ± 10.84
I-NeurAL 102.4± 7.53 46.2± 5.58 232.2± 3.80 1051.7± 5.85 503.1 ± 9.66 1712.7± 12.8
ALPS 403.27 ± 4.99 801.51 ± 7.31 239.49 ± 4.10 720.54 ± 5.50 780.08 ± 7.52 839.94 ± 3.13

NeurONAL-S 54.7± 3.21 10.5± 0.39 92.1± 3.4 166.4± 0.59 101.2± 2.32 116.3± 3.39

Table 4.2: Test accuracy and running time compared to bandit-based methods in stream-
based setting.

4.3.4 NeurONAL-P Results

Similar to the streaming setting, we use testing accuracy and running time to measure

the performance. Table 4.3 shows the results. As shown, NeurONAL-P also consistently

outperforms the baselines on all datasets in term of testing accuracy. This is because the

baselines that do not have explicit exploration tend to be trapped in sub-optimal solutions.

In most cases, NeurONAL-P experiences a significant time speed-up.

Figure 4.5 compares the testing accuracy at each query round for NeurONAL-P and the

baselines. In most cases, NeurONAL-P has a higher testing accuracy across the query

rounds. However, for a few datasets - such as MagicTelescope and Letter - Coreset has a

better testing accuracy in the early query rounds. Still, the final testing accuracy at 10

rounds for NeurONAL-P is the highest compared to the baselines.

4.3.5 Parameter Studies

Here, we perform ablation studies for a few important parameters. In particular, we

perform ablation studies on µ and γ for NeurONAL-P and on the label budget percentage

for NeurONAL-S. We do not perform a label budget ablation on NeurONAL-P because the

rounds and budget per round is fixed by previous work to ensure comparability.

µ and γ. Table ?? shows NeurONAL-P with varying µ and γ values (500, 1000, 2000) on

four datasets. Intuitively, if µ and γ are too small, NeurONAL-P will place more weight

23

Figure 4.4: Regret comparison on six datasets in the stream-based setting. Note: Margin
and NeurONAL-S perform similarly, so it might be hard to see both lines.

on the tail of the distribution while sampling. Otherwise, NeurONAL-P will focus more on

the head of the sampling distribution. From the results in the table, it seems that different

datasets respond to different values of µ and γ. This sensitivity study roughly shows good

values for µ and γ.

24

Adult MT Letter Covertype Shuttle Fashion
Accuracy

CoreSet 76.7 ± 1.13 75.1 ± 0.79 80.6 ± 0.63 62.6 ± 3.11 97.7 ± 0.41 80.4 ± 0.08
BADGE 76.6 ± 0.49 71.6 ± 0.81 81.7 ± 0.57 64.8 ± 1.02 98.6 ± 0.39 76.1 ± 0.21

DynamicAL 72.4 ± 0.14 67.8 ± 1.01 63.2 ± 0.31 54.1 ± 0.12 78.7 ± 0.05 54.5 ± 0.19
ALBL 78.1 ± 0.45 73.9 ± 0.71 81.9 ± 0.47 65.3 ± 0.14 98.6 ± 0.37 77.6 ± 0.32

NeurONAL-P 79.1 ± 0.04 81.3 ± 0.12 83.7 ± 0.07 67.6 ± 0.21 99.5 ± 0.01 81.1 ± 0.13
Running Time

CoreSet 43.1 ± 7.65 119.3 ± 4.42 228.3 ± 6.51 32.5 ± 10.94 10.9 ± 2.22 33.1 ± 6.32
BADGE 159.5 ± 4.61 212.5 ± 9.32 484.8 ± 7.04 545.7 ± 9.32 222.9 ± 5.13 437.8 ± 5.32

DynamicAL 24.3 ± 5.21 821.5 ± 6.14 382.3 ± 3.13 621.6 ± 3.21 483.4 ± 9.78 413.2 ± 7.14
ALBL 315.8 ± 4.31 343.5 ± 6.24 271.3 ± 6.32 481.3 ± 5.21 63.2 ± 2.16 92.1 ± 3.42

NeurONAL-P 17.2 ± 3.24 140.1 ± 3.69 133.7 ± 12.8 14.1 ± 5.81 15.6 ± 8.03 25.5 ± 7.80

Table 4.3: Testing accuracy (%) and running time on all methods in pool-based Setting

Letter Adult
γ γ

500 1000 2000 500 1000 2000
500 80.9% 81.7% 80.5% 500 79.9% 79.4% 78.9%

µ 1000 77.9% 83.9% 78.9% µ 1000 79.1% 79.7% 79.0%
2000 81.7% 81.8% 80.1% 2000 79.4% 79.4% 79.7%

Fashion MT
γ γ

500 1000 2000 500 1000 2000
500 80.3% 80.5% 79.5% 500 79.5% 80.9% 80.6%

µ 1000 80.5% 80.6% 80.4% µ 1000 80.2% 80.9% 80.1%
2000 80.8% 80.9% 80.7% 2000 80.5% 80.6% 81.3%

Table 4.4: Testing Accuracy on four datasets (Letter, Adult, Fashion, and MT) with varying
µ and γ in pool-based setting

Label budget. Tables 4.5, 4.6, and 4.7 show NeurONAL-S’ performance in active learning

with different budget percentages: 3%, 10%, 50%. NeurONAL-S achieves the best perfor-

mance in most of the experiments. With 3% label budget, almost all neural network models

are not well trained. Thus, NeurONAL-S does not perform stably. With a 10% and 50%

label budget, NeurONAL-S achieves better performance, because the advantages of neural

network models can better exploit and explore this labeled information.

4.4 CONNECTION TO GAD.

At first glance, this method does not seem to directly relate to graph anomaly detection.

However, GAD can be thought of as a downstream task for this model training algorithm.

25

Adult Covertype Fashion MagicTelescope Letter Shuttle
I-NeurAL 79.4% 52.8% 51.9% 72.3% 74.6% 93.0%

NeurAL-NTK 23.9% 1.56% 11.9% 32.9% 42.8% 70.6%
ALPS 24.2% 36.8% 10.0% 64.9% 72.7% 79.4%

NeurONAL-S 79.9% 65.6% 69.7% 77.3% 74.2% 99.8%

Table 4.5: Test accuracy with 3% budget in stream-based setting

Adult Covertype Fashion MagicTelescope Letter Shuttle
I-NeurAL 80.5% 55.4% 71.4% 77.9% 81.8% 99.2%

NeurAL-NTK 70.5% 59.9% 38.7% 34.3% 53.8% 75.9%
ALPS 24.2% 36.8% 10.0% 35.1% 79.9% 79.4%

NeurONAL-S 79.5% 71.3% 81.3% 82.1% 81.8% 99.8%

Table 4.6: Test accuracy with 10% budget in stream-based setting

Adult Covertype Fashion MagicTelescope Letter Shuttle
I-NeurAL 83.4% 65.9% 82.5% 77.9% 85.8% 99.7%

NeurAL-NTK 76.9% 73.1% 56.8% 81.6% 79.3% 97.1%
ALPS 75.8% 36.8% 10.0% 64.9% 81.5% 79.4%

NeurONAL-S 84.6% 75.9% 85.4% 86.4% 86.9% 99.8%

Table 4.7: Test accuracy with 50% budget in stream-based setting

Anomaly detection is a flavor of classification where the two classes are “anomalous” and “be-

nign”. One key difference is that anomaly detection is an imbalanced classification problem,

whereas k-classification assumes balance in the dataset. For this reason, anomaly detection

methods need to be designed carefully to offset the imbalance in the dataset.

Since NeurONAL is designed to work with tabular data, we can create node embeddings

using a graph neural network (or a variant), and treat the embeddings as tabular data.

Experimentation with this result will be performed in Chapter 5.

4.5 SUMMARY

In this chapter, we described an active learning algorithm for training a multi-armed bandit

on the downstream task of multi-class classification. The dual neural network architecture

represents the exploitation and exploration goals accordingly. The exploitation network aims

to assign labels to data points while the exploration network aims to estimate the uncertainty

of the exploitation network. As shown in the evaluation, using both networks allowed us to

outperform the baselines - a few of the established algorithms that solve this problem - by

a margin of 0.6-47.8%.

26

Figure 4.5: Test accuracy versus the number of query rounds in pool-based setting on six
datasets. NeurONAL-P outperforms baselines on all datasets.

27

CHAPTER 5: GAD USING BANDITS

In this chapter, we describe a solution for anomaly detection using active bandit-based

approaches. This method is a combination of the previous two methods mentioned in this

thesis (AMUGraph and NeurONAL). From AMUGraph, we are able to generate soft labels

for node classification. From NeurONAL, we are able to balance exploitation and exploration

with the use of neural networks. Combining the two frameworks will enable us to leverage

the strong points of both methods. We call this combined method Active Mix Up for GAD

using Bandits (AMUBandits).

5.1 PROBLEM FORMULATION

Input: (1) a graph G = (V,E,X) with nodes V - with attributes X - and edges E, (2)

an oracle O that provides soft labels.

Goal: to learn a bandit that learns to assign a given data instance x a label from the

label set {anomalous, benign}.

5.2 METHODOLOGY

Recalling the exploitation and exploration networks illustrated in Figure 4.3, and the

SemiVAE model from Figure 3.1, we can combine these diagrams to illustrate the neural

network architecture for this new model, as shown in Figure 5.1. Here, the exploitation

network still learns to classify data instances as anomalous or benign hence, AMUGraph

behaves as our exploitation network. Moreover, the classification technique illustrated in

Figure 3.2 remains the same (it is represented by the box labeled ‘Classification‘). Same

as in NeurONAL, the exploration network still models the uncertainty in the exploitation

network.

We replace the neural network with AMUGraph because, while the neural network will

use uncertainty in prediction as a querying metric, AMUGraph uses the reconstruction loss.

Ultimately, using the reconstruction loss makes more sense in the task of anomaly detection.

Active Learning. Here, we answer the three questions relevant to active learning algo-

rithm design outlined in Section 1.2.2. Calculating uncertainty is similar to that of AMU-

Graph: based on the reconstruction loss. The querying is also similar to AMUGraph where

a query is made to a human expert who will return a soft label. Query information max-

28

Figure 5.1: The two neural networks for exploitation (left) using AMUGraph’s SemiVAE
architecture and exploration (right) using f2 from NeurONAL. Here, pa and pb are the
probabilities of a node being anomalous and benign, respectively where pa + pb = 1.

imization has two parts: (1) data augmentation and (2) a joint cooperation between the

exploration and exploitation networks to learn to predict a correct class label with high

certainty.

5.3 EMPIRICAL RESULTS

5.3.1 Experimental Setup

We use the same datasets as in Chapter 3. We add the Amazon dataset [56] where the

nodes are users and edges connect users to products, products to reviews, and reviews to

users. To calculate performance, we use ROC-AUC. We use GDN (from Chapter 3) and our

previous methods as baselines - namely, AMUGraph, NeurONAL-S, and NeurONAL-P.

To apply NeurONAL-S and NeurONAL-P on graph datasets, we create node embeddings

using Node2Vec [57] that will encode the structural information. We concatenate the node

attributes to the embedding and treat this as tabular data, with which the NeurONAL

algorithms are equipped to handle.

29

5.3.2 Results

The results are gathered in Table 5.1. The comparison between the results from AMU-

Graph and AMUBandits shows that AMUGraph benefits from the principled exploration

and exploitation, with a 3-20% performance increase. AMUBandits and NeurONAL-P tend

to perform differently for different datasets. NeurONAL-P chooses points to query by es-

timating the prediction uncertainty of the data, creating a probabilistic distribution where

higher uncertainty yields higher sampling probability, and sampling from the distribution.

AMUBandits chooses points based on the reconstruction loss criteria from AMUGraph. Ac-

cording to the results in Table 5.1, there is no clear indication why a certain querying strategy

works over another.

NeurONAL-S outperforms AMUGraph, NeurONAL-P, and AMUBandits on two out of

three datasets. However, that could be due to the method existing in a different setting.

Overall, NeurONAL-S uses much more labeled data than any of the pool-based settings do.

5.3.3 Hyperparameter Tuning

Tables 5.2, 5.3, and 5.4 display the performance of AMUBandits on the Amazon, Pubmed

and Yelp datasets, respectively, with varying training epoch rounds and varying latent di-

mension sizes. Unfortunately, there is no clear pattern that can help interpret the range of

values our method performs well on. Each dataset exhibits different trends.

5.4 SUMMARY

In this chapter, we describe a work that combines the two algorithms AMUGraph and

NeurONAL into one algorithm AMUBandits: using active learning to train a multi-armed

bandit for node anomaly detection using soft labels. We keep the principle of the exploitation

and exploration network, where the exploitation network is essentially AMUGraph. We show

through our evaluation that it can outperform a few of the baselines, but still requires work

to reliably outperform the stronger baselines.

30

Pubmed Yelp Amazon
GDN 61.7 67.8 88.5

AMUGraph 74.1 72.6 53.6
NeurONAL-P 69.7 55.9 89.1
NeurONAL-S 78.9 67.8 89.5

AMUBandits-NoAug 73.2 57.9 71.3
AMUBandits 77.8 69.4 73.2

Table 5.1: ROC-AUC (%) on selected datasets and baselines compared with AMUBandits.
Higher is better.

E/L.D. 8 16 32
5 50.9 59.6 64.4
10 52.5 54.7 54.4
20 52.3 73.2 55.0

Table 5.2: ROC-AUC (%) for varying number of training epochs (denoted by E, values
change by rows) and latent dimension sizes (denoted by L.D., values change by columns) on
the Amazon dataset.

E /L.D. 8 16 32
5 63.7 75.2 77.8
10 61.2 77.7 62.7
20 51.8 51.4 53.0

Table 5.3: ROC-AUC (%) for varying number of training epochs (denoted by E, values
change by rows) and latent dimension sizes (denoted by L.D., values change by columns) on
the Pubmed dataset.

E /L.D. 8 16 32
5 59.3 54.0 69.4
10 58.4 53.2 65.7
20 53.3 57.5 51.1

Table 5.4: ROC-AUC (%) for varying number of training epochs (denoted by E, values
change by rows) and latent dimension sizes (denoted by L.D., values change by columns) on
the Yelp dataset.

31

CHAPTER 6: CONCLUSION

6.1 SUMMARY

This thesis explores many different methods for graph anomaly detection using represen-

tation learning with data augmentation, and with multi-armed bandits. Overall, all methods

employed active learning in the problem settings. Each method worked alongside with a hu-

man simulator to learn a model that is comparable to a model with full access to the labeled

information. One significant advantage of these works is the simplicity and contained nature

- future research with these methods as a backbone can be expected without hangups due

to the implementations.

From the AMUGraph work, we were able to show that augmenting queried data provided

significant performance boosts to the task of graph anomaly detection. Next, from the

NeurONAL work, we showed that quantifying exploration and exploitation led to better data

point selection for querying to the task of classification. Finally, from the AMUBandits work,

we began to show the benefits of using data augmentation with exploration-exploitation-

aware data selection strategies.

6.2 FUTURE WORK

6.2.1 Using Temporal Signals

Many GAD applications contain anomalies that progress over time. Our current frame-

work cannot handle temporal information, but it can be modified to do so. As a naive

baseline, we can run any of the three methods on each timestamp of the graph and keep

track of the confidence of the predictions. Once the difference in confidences changes beyond

a threshold, we can label such a node anomalous.

6.2.2 Unreliable Soft Labeling

In real life applications of soft labeling, adversarial approaches are most likely necessary

to handle labelers that provide wrong information (intentionally or accidentally), or vague

information (uncertain labels, i.e., confidence near 50%). In such situations, an additional

teacher model for knowledge distillation can come in handy. We can also make use of anti-

bias learning techniques from the Fair AI community to learn robust models despite biased

32

soft labels.

6.2.3 Unified GAD

There is much work to be done in this area, and in the general area of graph anomaly

detection. First off, there are other kinds of anomalies in graphs besides nodes - edges and

subgraphs. Depending on the use case, detecting anomalous edges and subgraphs could be

useful in learning good graph models.

One such use case could be data cleaning. Graph data are expensive to collect, and

therefore might not be entirely clean and error-free. Being able to detect such mistakes

made in data collection will be valuable. Another use case could be detecting anomalies

in complex physical representations, such as river networks [58] and power grid systems

[59]. Identifying anomalies is crucial in such systems, especially considering the various

types of anomalies. For instance, in the power grid example, suspicious activity centered

around a specific tower could correspond to an anomalous node while that for a power line

could correspond to an anomalous edge. Being able to identify anomalies with that level of

granularity would prove very helpful.

The methods mentioned in this thesis can be furthered to handle these other kinds of

anomalies as well. Currently, there is not a lot of work on learning a singular model to classify

nodes and edges, separately. A few reasons why researchers have not tapped into this area

could be: (1) there are little to no relevant datasets available, despite the practical use cases,

(2) such one-size-fits-all algorithms are quite challenging to train, and (3) these algorithms

might need to be domain-specific, making it difficult to generalize to other domains easily.

We could broaden the scope of these works by handling the graph using different views,

and using principles from multi-scale anomaly detection [60, 61, 62]. These works use the

structural information along with the node attribute information to learn robust anomaly

detection models. Some of these works use contrastive learning to differentiate a node and

an ego-net. We could also borrow the idea of task adapters from the natural language

processing community [63] to jointly learn but separately infer on anomalous nodes, edges,

and/or subgraphs.

6.2.4 Generative Modeling for Active Learning

As mentioned in Section 1.2.2, a third (and unexplored in this thesis) strategy for active

learning is membership query synthesis (MQS). In this strategy, the queries are not made on

the available data, but on manipulated samples of fake data that can yield the most possible

33

information. This is a very niche area of active learning because the queries made by MQS

techniques are mostly not interpretable by humans. However, MQS is a very powerful

framework that can reduce the number of queries needed by a significant amount because

each query contains more information (due to the nature of the query creation) compared

to queries made with stream-based or pool-based active learning.

Since these queries are not human readable, [64] has become a standard solution to using

MQS with representation learning-based approaches. Using a binary-search like approach,

the decision boundary is approximated. One point above and one point below the decision

boundary are found where the midpoint mp between those is queried. Next, they find the

nearest neighbor of the point mp, decode it, and query the label for that point. Technically,

queries are still made on the existing data, but the learner is able to guarantee good label

information by ensuring the data is human readable.

34

REFERENCES

[1] R. Zafarani, M. A. Abbasi, and H. Liu, Social media mining: an introduction. Cam-
bridge University Press, 2014.

[2] J. Xu, S. Kim, M. Song, M. Jeong, D. Kim, J. Kang, J. F. Rousseau, X. Li, W. Xu,
V. I. Torvik et al., “Building a pubmed knowledge graph,” Scientific data, vol. 7, no. 1,
p. 205, 2020.

[3] S. Zhang, H. Yin, T. Chen, Q. V. N. Hung, Z. Huang, and L. Cui, “Gcn-based user
representation learning for unifying robust recommendation and fraudster detection,”
in Proceedings of the 43rd international ACM SIGIR conference on research and devel-
opment in information retrieval, 2020, pp. 689–698.

[4] X. Ma, J. Wu, S. Xue, J. Yang, C. Zhou, Q. Z. Sheng, H. Xiong, and L. Akoglu, “A com-
prehensive survey on graph anomaly detection with deep learning,” IEEE Transactions
on Knowledge and Data Engineering, vol. 35, no. 12, pp. 12 012–12 038, 2023.

[5] R. Yu, H. Qiu, Z. Wen, C. Lin, and Y. Liu, “A survey on social media anomaly detec-
tion,” ACM SIGKDD Explorations Newsletter, vol. 18, no. 1, p. 1–14, Aug. 2016.

[6] M. Orabi, D. Mouheb, Z. Al Aghbari, and I. Kamel, “Detection of bots in social media:
a systematic review,” Information Processing & Management, vol. 57, no. 4, p. 102250,
2020.

[7] J. Tang, F. Hua, Z. Gao, P. Zhao, and J. Li, “Gadbench: Revisit-
ing and benchmarking supervised graph anomaly detection,” in Advances in
Neural Information Processing Systems, A. Oh, T. Neumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine, Eds., vol. 36. Curran Associates,
Inc., 2023. [Online]. Available: https://proceedings.neurips.cc/paper files/paper/
2023/file/5eaafd67434a4cfb1cf829722c65f184-Paper-Datasets and Benchmarks.pdf p.
29628–29653.

[8] J. Chen, Q. Chen, F. Jiang, X. Guo, K. Sha, and Y. Wang, “Scn gnn: A gnn-based
fraud detection algorithm combining strong node and graph topology information,”
Expert Systems with Applications, vol. 237, p. 121643, 2024.

[9] Z. Liu, C. Cao, F. Tao, and J. Sun, “Revisiting graph contrastive learning for anomaly
detection,” no. arXiv:2305.02496, May 2023, arXiv:2305.02496 [cs]. [Online]. Available:
http://arxiv.org/abs/2305.02496

[10] K. Ding, J. Li, and H. Liu, “Interactive Anomaly Detection on Attributed Networks,”
in Proceedings of the Twelfth ACM International Conference on Web Search and
Data Mining. Melbourne VIC Australia: ACM, Jan. 2019. [Online]. Available:
https://dl.acm.org/doi/10.1145/3289600.3290964 pp. 357–365.

35

[11] G. Pang, “Toward Deep Supervised Anomaly Detection: Reinforcement Learning
from Partially Labeled Anomaly Data,” 2022. [Online]. Available: https:
//dl.acm.org/doi/pdf/10.1145/3447548.3467417

[12] K. Ding, Q. Zhou, H. Tong, and H. Liu, “Few-shot network anomaly detection via
cross-network meta-learning,” 2021.

[13] Y. Ban, I. Agarwal, Z. Wu, Y. Zhu, K. Weldemariam, H. Tong, and J. He, “Neural active
learning beyond bandits,” in International Conference on Learning Representations,
2024.

[14] D. Bouneffouf, I. Rish, and C. Aggarwal, “Survey on applications of multi-armed and
contextual bandits,” in 2020 IEEE Congress on Evolutionary Computation (CEC),
2020, pp. 1–8.

[15] M. Coggan, “Exploration and exploitation in reinforcement learning.”

[16] B. Settles, “Active learning literature survey,” 2010.

[17] E. B. Baum and K. Lang, “Query learning can work poorly when a human oracle is
used,” in International joint conference on neural networks, vol. 8. Beijing China,
1992, p. 8.

[18] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical risk
minimization,” no. arXiv:1710.09412, Apr. 2018, arXiv:1710.09412 [cs, stat]. [Online].
Available: http://arxiv.org/abs/1710.09412

[19] F. Zhu, Z. Cheng, X.-Y. Zhang, and C.-L. Liu, “OpenMix: Exploring Outlier Samples
for Misclassification Detection,” in 2023 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). Vancouver, BC, Canada: IEEE, June 2023. [Online].
Available: https://ieeexplore.ieee.org/document/10205216/ pp. 12 074–12 083.

[20] Z. Cheng, Z. Jiang, Y. Yin, C. Wang, and Q. Gu, “Learning to classify open intent via
soft labeling and manifold mixup,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 30, pp. 635–645, 2022.

[21] X. Wang, B. Jin, Y. Du, P. Cui, and Y. Yang, “One-Class Graph Neural Networks
for Anomaly Detection in Attributed Networks,” Neural Computing and Applications,
vol. 33, pp. 12 073–12 085, Sep. 2021, arXiv:2002.09594 [cs, stat]. [Online]. Available:
http://arxiv.org/abs/2002.09594

[22] H. Xu, Y. Wang, G. Pang, S. Jian, N. Liu, and Y. Wang, “RoSAS: Deep Semi-
Supervised Anomaly Detection with Contamination-Resilient Continuous Supervision,”
July 2023, arXiv:2307.13239 [cs]. [Online]. Available: http://arxiv.org/abs/2307.13239

36

[23] K. Ding, J. Li, R. Bhanushali, and H. Liu, “Deep Anomaly Detection
on Attributed Networks,” in Proceedings of the 2019 SIAM International
Conference on Data Mining (SDM), ser. Proceedings. Society for Industrial
and Applied Mathematics, May 2019, pp. 594–602. [Online]. Available: https:
//epubs.siam.org/doi/10.1137/1.9781611975673.67

[24] J. Lin, Y. He, W. Xu, J. Guan, J. Zhang, and S. Zhou, “Latent feature reconstruction
for unsupervised anomaly detection,” Applied Intelligence, vol. 53, no. 20, pp. 23 628–
23 640, Oct. 2023. [Online]. Available: https://doi.org/10.1007/s10489-023-04767-2

[25] T. Pimentel, M. Monteiro, A. Veloso, and N. Ziviani, “Deep active learning for anomaly
detection,” in 2020 International Joint Conference on Neural Networks (IJCNN), 2020,
pp. 1–8.

[26] T. Zhou, K.-H. Thung, M. Liu, F. Shi, C. Zhang, and D. Shen, “Multi-modal latent
space inducing ensemble svm classifier for early dementia diagnosis with neuroimaging
data,” Medical image analysis, vol. 60, p. 101630, 2020.

[27] J. Li, X. Xu, L. Gao, Z. Wang, and J. Shao, “Cognitive visual anomaly detection
with constrained latent representations for industrial inspection robot,” Applied Soft
Computing, vol. 95, p. 106539, 2020.

[28] H. Liu, Y. Zhan, H. Xia, Q. Mao, and Y. Tan, “Self-supervised transformer-based
pre-training method using latent semantic masking auto-encoder for pest and disease
classification,” Computers and Electronics in Agriculture, vol. 203, p. 107448, 2022.

[29] T. Huang, P. Chen, and R. Li, “A Semi-Supervised VAE Based Active Anomaly
Detection Framework in Multivariate Time Series for Online Systems,” in Proceedings
of the ACM Web Conference 2022. Virtual Event, Lyon France: ACM, Apr. 2022.
[Online]. Available: https://dl.acm.org/doi/10.1145/3485447.3511984 pp. 1797–1806.

[30] T. Zhang, K. Johansson, and N. Li, “Multi-armed Bandit Learning on
a Graph,” in 2023 57th Annual Conference on Information Sciences and
Systems (CISS). Baltimore, MD, USA: IEEE, Mar. 2023. [Online]. Available:
https://ieeexplore.ieee.org/document/10089744/ pp. 1–6.

[31] K. Arshad, R. F. Ali, A. Muneer, I. A. Aziz, S. Naseer, N. S. Khan, and S. M. Taib,
“Deep reinforcement learning for anomaly detection: A systematic review,” IEEE Ac-
cess, vol. 10, pp. 124 017–124 035, 2022.

[32] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks,” 2014.

[33] C. Zhong, M. C. Gursoy, and S. Velipasalar, “Deep actor-critic reinforcement learn-
ing for anomaly detection,” in 2019 IEEE global communications conference (GLOBE-
COM). IEEE, 2019, pp. 1–6.

37

[34] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 Eighth IEEE Inter-
national Conference on Data Mining, 2008, pp. 413–422.

[35] J. Dong, Q. Zhang, X. Huang, Q. Tan, D. Zha, and Z. Zihao, “Active Ensemble
Learning for Knowledge Graph Error Detection,” in Proceedings of the Sixteenth ACM
International Conference on Web Search and Data Mining. Singapore Singapore:
ACM, Feb. 2023. [Online]. Available: https://dl.acm.org/doi/10.1145/3539597.3570368
pp. 877–885.

[36] X. Ying, “An overview of overfitting and its solutions,” in Journal of physics: Confer-
ence series, vol. 1168. IOP Publishing, 2019, p. 022022.

[37] H. Ling, Z. Jiang, M. Liu, S. Ji, and N. Zou, “Graph mixup with soft alignments,” in
Proceedings of the 40th International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, A. Krause, E. Brunskill, K. Cho, B. Engelhardt,
S. Sabato, and J. Scarlett, Eds., vol. 202. PMLR, 23–29 Jul 2023. [Online]. Available:
https://proceedings.mlr.press/v202/ling23a.html pp. 21 335–21 349.

[38] Y. Wang, W. Wang, Y. Liang, Y. Cai, and B. Hooi, “Mixup for node and graph classi-
fication,” in Proceedings of the Web Conference 2021, 2021, pp. 3663–3674.

[39] S. Zhou, X. Huang, N. Liu, H. Zhou, F.-L. Chung, and L.-K. Huang, “Improving
Generalizability of Graph Anomaly Detection Models via Data Augmentation,” IEEE
Transactions on Knowledge and Data Engineering, vol. 35, no. 12, pp. 12 721–12 735,
Dec. 2023. [Online]. Available: https://ieeexplore.ieee.org/document/10119211/

[40] T. Yang, Y. Huang, Y. Xie, J. Liu, and S. Wang, “MixOOD: Improving
Out-of-distribution Detection with Enhanced Data Mixup,” ACM Transactions on
Multimedia Computing, Communications, and Applications, vol. 19, no. 5, pp. 1–18,
Sep. 2022. [Online]. Available: https://dl.acm.org/doi/10.1145/3578935

[41] N. Chen, Z. Liu, B. Hooi, B. He, R. Fathony, J. Hu, and J. Chen, “Consistency
training with learnable data augmentation for graph anomaly detection with limited
supervision,” in The Twelfth International Conference on Learning Representations,
2024. [Online]. Available: https://openreview.net/forum?id=elMKXvhhQ9

[42] Q. Nguyen, H. Valizadegan, and M. Hauskrecht, “Learning classification models with
soft-label information,” Journal of the American Medical Informatics Association,
vol. 21, no. 3, pp. 501–508, 2014.

[43] J. Wang, H. Xie, F. L. Wang, and L.-K. Lee, “Improving text classification via a soft
dynamical label strategy,” International Journal of Machine Learning and Cybernetics,
vol. 14, no. 7, pp. 2395–2405, 2023.

[44] D. Liang, F. Yang, T. Zhang, and P. Yang, “Understanding mixup training methods,”
IEEE Access, vol. 6, pp. 58 774–58 783, 2018.

38

[45] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad, “Collective
classification in network data,” AI magazine, vol. 29, no. 3, pp. 93–93, 2008.

[46] S. Rayana and L. Akoglu, “Collective opinion spam detection: Bridging review net-
works and metadata,” in Proceedings of the 21th acm sigkdd international conference
on knowledge discovery and data mining, 2015, pp. 985–994.

[47] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” arXiv preprint arXiv:1609.02907, 2016.

[48] F. Z. Haoyi Fan and Z. Li, “Anomalydae: Dual autoencoder for anomaly detection
on attributed networks,” in 45th International Conference on Acoustics, Speech, and
Signal Processing. IEEE, 2020.

[49] Z. Wang, P. Awasthi, C. Dann, A. Sekhari, and C. Gentile, “Neural active learning with
performance guarantees,” Advances in Neural Information Processing Systems, vol. 34,
2021.

[50] Y. Ban, Y. Zhang, H. Tong, A. Banerjee, and J. He, “Improved algorithms for
neural active learning,” in Advances in Neural Information Processing Systems,
A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, Eds., 2022. [Online]. Available:
https://openreview.net/forum?id=riIaC2ivcYA

[51] G. DeSalvo, C. Gentile, and T. S. Thune, “Online active learning with surrogate loss
functions,” Advances in Neural Information Processing Systems, vol. 34, 2021.

[52] O. Sener and S. Savarese, “Active learning for convolutional neural networks: A core-set
approach,” arXiv preprint arXiv:1708.00489, 2017.

[53] J. T. Ash, C. Zhang, A. Krishnamurthy, J. Langford, and A. Agarwal, “Deep
batch active learning by diverse, uncertain gradient lower bounds,” arXiv preprint
arXiv:1906.03671, 2019.

[54] H. Wang, W. Huang, Z. Wu, H. Tong, A. J. Margenot, and J. He, “Deep active learning
by leveraging training dynamics,” Advances in Neural Information Processing Systems,
vol. 35, pp. 25 171–25 184, 2022.

[55] W.-N. Hsu and H.-T. Lin, “Active learning by learning,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 29, no. 1, 2015.

[56] Y. Dou, Z. Liu, L. Sun, Y. Deng, H. Peng, and P. S. Yu, “Enhancing graph neural
network-based fraud detectors against camouflaged fraudsters,” in Proceedings of the
29th ACM international conference on information & knowledge management, 2020,
pp. 315–324.

[57] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,” in Pro-
ceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery
and data mining, 2016, pp. 855–864.

39

[58] K. Buchhorn, E. Santos-Fernandez, K. Mengersen, and R. Salomone, “Graph neu-
ral network-based anomaly detection for river network systems,” arXiv preprint
arXiv:2304.09367, 2023.

[59] S. Li, A. Pandey, B. Hooi, C. Faloutsos, and L. Pileggi, “Dynamic graph-based anomaly
detection in the electrical grid,” IEEE Transactions on Power Systems, vol. 37, no. 5,
pp. 3408–3422, 2021.

[60] M. Jin, Y. Liu, Y. Zheng, L. Chi, Y.-F. Li, and S. Pan, “Anemone: Graph anomaly
detection with multi-scale contrastive learning,” in Proceedings of the 30th ACM Inter-
national Conference on Information & Knowledge Management, 2021, pp. 3122–3126.

[61] J. Duan, S. Wang, P. Zhang, E. Zhu, J. Hu, H. Jin, Y. Liu, and Z. Dong, “Graph
anomaly detection via multi-scale contrastive learning networks with augmented view,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 6, 2023,
pp. 7459–7467.

[62] L. Gutiérrez-Gómez, A. Bovet, and J.-C. Delvenne, “Multi-scale anomaly detection on
attributed networks,” in Proceedings of the AAAI conference on artificial intelligence,
vol. 34, no. 01, 2020, pp. 678–685.

[63] N. Bang, J. Lee, and M.-W. Koo, “Task-optimized adapters for an end-to-end task-
oriented dialogue system,” arXiv preprint arXiv:2305.02468, 2023.

[64] L. Wang, X. Hu, B. Yuan, and J. Lu, “Active learning via query synthesis and nearest
neighbour search,” Neurocomputing, vol. 147, pp. 426–434, 2015.

40

